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The mean volume and the mean surface area of the convex hull of » random
points chosen independently and uniformly from the boundary of the d-dimensional
unit ball are determined asymptotically as n — s¢. The mean volume of the simplex
with one vertex at the centre of a d-dimensional ball and with & random vertices
chosen independently and uniformly from the boundary or from the interior of this
ball is calculated. & 1990 Academic Press, Inc.

1. INTRODUCTION

Let K be a d-dimensional convex body. For every integer n>d there
exists a polytope P, which is best approximating for K with respect to the
symmetric difference metric among all polytopes with at most n vertices.
That means

O(K, P,)=min{J(K, P)| P is a polytope with at most » vertices},
where 6(K, P) denotes the d-dimensional volume of the set of all points

belonging to one and only one of the bodies K and P.
Dudley [8] proved that for any convex body K,

(K, P,)<c (1/n)* 9=V for n>d
On the other hand, if K is sufficiently smooth, a theorem of Gruber and
Kenderov [13] shows that

3K, P)=c,(1/m)%4=1  for n>d.

Moreover, a conjecture of Gruber [11] says that the asymptotic relation
(K, P}~ cy(1/n)¥4—1) as n—ox

holds for sufficiently smooth K. Corresponding results are known for best
approximating polytopes with respect to other measures of deviation (cf.
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Dudiey [87, McClure and Vitale [167, Schneider [237}. In ali thesc cases
the rate of convergence is (1/n)*“ Y. Gruber {117 gives a detailed survey
of the approximation of convex bodies.

The best approximating polytopes P, for a given convex body in general
are not known explicitly. Therefore algorithms are needed to construct
“well approximating” polytopes. Two deterministic procedures for

N

constructing asymptotically (n— oc) best approximating polygons for
sufficiently smooth convex bodies in the plane were specified by McClure
and Vitale [16]. A related problem was studied by Kenderov [1573. One
method to get well approximating polytopes is tc use random poiytopes.

The convex hull H,(K) of n random points chosen independently and
uniformly from the interior of a convex body K is a random polytope with
at most n vertices approximating the body K. So it is interesting io
mvestigate the mean values of some numbers associated with H, (X, such
as the volume, the surface area, and the mean width. In particuiar the
asymptotic behaviour {n — oc) of these mean values is to be determined.
Fundamental ideas are due to Rényi and Sulanke 720, 2171, In the last
years important contributions to this subject have come from Schneider
and Wieacker [24, 267 and Buchta [1, 2, 4]. Moreover, Buchta [ 57 gives
a survey of approximation by random polytopes.

Let B, denote the d-dimensional unit ball. The mean value of the
symmetric difference 6(B,, H,(B,)) tends to zerc as fast as {1/n)>“ 1" if »
tends to oc. The expected difference between the surface areas of B, and
H (B,) tends to zero with the same order (Wieacker [267; cf. [3, 197).
Both results hoid if X is a sufficiently smooth body in the plane (Rényi and
Sulanke [217]). If K is sufficiently smooth but not 2 bali, in higher dimen-
sions it is only known that the expected deviation of K from H (K} with
respect to the mean width tends to zero as fast as {i/n)*“* Y if n— «
(Schneider and Wieacker [247). In all these cases the rate of convergence
of best approximating polytopes is not attained.

Approximation of a convex body by random polytopes is improved if the
random points are chosen independently and uniformly from the boundary
of the convex body. If a sufficiently smooth d-dimensional convex body is
approximated by random polytopes of this kind, the expected difference
between the mean width of the convex body and the mean width of the
random polytope tends to zero as fast as (1/7)>“~V if 1 — o (Buchiz er
al. [77). It is proved in the present paper that the same rate of convergence
occurs in the case in which the d-dimensional unit ball is approximated by
random polytopes of this type with respect tc the symmetric difference
metric. The corresponding result concerning the surface area deviation,
which was cited in [7] without proof, is proved too, because it is needed
as an auxiliary result to get the main result. That means that in all these
cases the rate of convergence of best approximating polytopes is attained,
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The above mentioned mean values of the surface area and of the mean
width of random polytopes in the d-dimensional unit ball have been
calculated for fixed n by Buchta et al. [6, 7]. The method used to derive
these formulas does not work in the case of the volumes of random
polytopes considered above (cf. Buchta [3, Chap.2]). But it is easy to
calculate the first and the second moment of a random simplex with one
vertex at the centre of a d-dimensional ball and d random vertices chosen
independently and uniformly from the boundary or from the interior of this
ball. The mean volume of a random simplex of the last type characterises
the ellipsoids among all centrally symmetric convex bodies. These results
are stated in the last chapter of the present paper. Finally it should be
remarked that most of the results of this paper are contained in the
author’s dissertation [19], with complete versions of the proofs.

2. THE SURFACE AREA OF THE RANDOM POLYTOPE

THeOREM 1. Let S, denote the surface area of the convex hull of n
random points chosen independently and uniformly from the boundary ¢B, of
the d-dimensional unit ball B,. The expected difference between S, and the
surface area w, of B, is given by

E - Wg_1 wy_, \@rinEa-n

2 1\¥E-1
xF<d+——>(—> (1+0(1)) as n— .
d—1/\n

Proof. The surface area of the convex hull A, of n random points is
equal to the sum of the (d— 1)-dimensional volumes of the facets of H,,.
The convex hull of 4 random points is a facet of H, if and only if all
remaining n —d random points lie on only one of the two spherical caps
determined by the 4 points. This happens with probability

s n—d s n—d
I G
(2P By

where s denotes the surface area of the smaller one of the two caps. The n
random points are identically distributed and there are (%) possibilities to
choose d points out of n. So the expected surface area of H, is given by

()¢ . s\ 4 s\ Ldo(xy)  dw(x,)
E(Sn)—<d)Jxle(?‘-Bd“.deE?‘Bd<<w_d) +(1—5—d) )T Wq Da ,
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where T denotes the (d — 1)-dimensional volume of the convex hull of the
points x,, vcd and o denotes the spherical surface measure of ¢B8,. The
relation s/w, < 4 leads to

o n\ 3 [, s\ _dw(x)) dolx)
(5 ): i ‘e

d) Sxi€éBy  “xgeéBg\ 4/ ©y, W,

+O<k Yi\ as n— .

There is an equivaient method to generate the random points x,, .., x, on
éB,: First, choose a random hyperplane with distance p from the origin
and with unit normal vector ue¢B,. Then, choose ¢ random points
XY, .., X, from the intersection of the random hyperplane with ¢8,. The
corresponding probability density functions for these procedures were
specified by Miles [ 18] (cf. Buchta ef ai. {73}

der(x,) -+ do(x,)) = (d— 1) T doy'(x}) - - - deo'(x )1 — p*y %2 dp des(ur:

here w’ denotes the spherical surface measure on the intersection of tha
random hyperplane with ¢B,. This transformation gives

_ / d_l ! . Al zwd/. . . \'\.
E(S,,):i\'l>(—-—)—} <1——\) e TP e doo' () )

d
d 05 By

x(l—pz)’d"zdpdm(u)(l+o(1}) as n—> 0.

The second moment of the (d— l)-dimensicnal volume of a random
simplex with vertices on the boundary of a (d — 1 }-dimensional ball of radius
ris equal to r?~ Vdi((d— 1) (d— 1)? "'} (Miles [187). So it is possibie to
evaluate the integral in brackets and to get

_ / W 5 \;;711
E(S )= d — ——
(S.) <d/ @it (\(d_ J0 4 Wy
x (1 —p?)d—d-2 as n—x

Now a method of Wieacker [267 is used to determine the asymptotic
behaviour of E(S,):
The substitution ¢=1—p introduces the height ¢ of the smaller cne of
the two spherical caps determined by a hyperplane with distance p from the
ntre of the unit ball. Tt is sufficient to consider caps with smail height
¢ (for suitable c). The value of the integral caused by caps with height
t > ¢ exponentially tends to zero as # — oc. Hence,
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L wg_; \*7!pe s(e)\" ¢
E“""(d)d“’”“((d—l)wd) .0<1“’@)

X (2t— )@ =4=D2 g1+ 0(1))  as n— oo

Now the integrand in

I= f (I—S(I) t‘dz =22 t)(dz—d—z»'zdt

(OF

has to be determined approximately for small values of 7. The surface area
s(t) of a spherical cap with height ¢ is given by

s()=w4_ jo (29— g*)“~ " dg

=w 2 swemza—ne2 973 sy ,_ S
3 LT y@=5y2d+ 12 [d+ 12
a1 (d— 1 2 ! d+ 1 0( )

as ¢—0.

The binomial theorem leads to

<1 _w>n’= (1 _ wt(d—l)/z)n'

d=3)d=1) pld+1)72
><<1+n 2d+1) wt (14 o0(1)) as t—-0
with
Wy_y

d— 1o

n=n—d and w=20E-172

d?—d—2)12

After replacing (2—1)' by its linear part, the substitution

x=wn't¥ =72 yields

n@—a—ayz [T _x " (d—3)d— 1)(_1_ A=
I=2 Jo ! n' b+ 4(d+1) wn'

1 (d2—d—2)/(d—1)
oo o) (2

wn

(d- 2)2(d+1)< 1> "(1+o(1))>
wn

2 1 2/(d—1) )
()
— W

x(d“—d— )/(d—1)



y

Ll

B

BALL APPROXIMATION BY RANDOM POLYTOPES

with g=wc“ 12 Now ¢ should be small encugh to obtain 0<g<1
Multiplication of the factors in I gives a sum of integrals, each of which can
be evaluated asymptotically using the asymptotic expansion {see Wieacker
[26], Buchta [1])

rqn

{ x\" /1N
KI—E> xXdx=Ia+1)+01{ -1}
n \n/

!
v}
Y

as n—>x for O0<g<l, a>0.
As a consequence of
, d (’.'fz\3 a?
H~H an ~
\d) " d!

the proof is finished. |

If the unit circle B, is approximated by the random polygon #,.
according to Theorem 1, the mean perimeter deviatien is given by

2

_ 1\ .
E(a)z—S,,)=2n3<—) (1+o(1h as #— oL,
ny

On the other hand, the regular n-gon with vertices on the boundary of &2,
is the best approximating inscribed n-gon for B, with respect to the
perimeter deviation. Therefore the minimal perimeter deviation is given by

n_ w1\
Wy —2nsin=—=—-|— | “o\n
h n) VA

That means that the expected perimeter deviation achieved by stochastical
approximation is asymptotically (n— oo} 6 times the minimal perimeter
deviation.

Remark 1 [26]. Let S, denote the surface area of the convex hull of #
random points chosen independently and uniformly from the interior of the
d-dimensional unit ball B,. The expected difference between S, and the
surface area w, of B, is given by

_ do, Wgyy \ WD
T 2(d43)d— W \{d+ Do,,,/

) 1\ 2+
xI'td+— —\, (I+o(1)) as
d+1/\n/

E(wd— Sn)

=
|
8
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3. THE VOLUME OF THE RANDOM POLYTOPE

THEOREM 2. Let V, denote the volume of the convex hull of n random
points chosen independently and uniformly from the boundary éB,; of the
d-dimensional unit ball B,. The expected difference between V, and the
volume w, of B, is given by

E Wy WDy —(d+ 1)/(d—1)
E - V =
(7y n) 2(d+1)!<(d—l)wd>

2 1 2/(d—1)
xI|d+1+—=)~- (1+o0(1)) as n- oo,
d—1/\n

where w, denotes the surface area of B,.

Proof. The probability that the centre of B, is not an interior point of
the convex hull A, of the n random points exponentially tends to zero as
n— oo (Wendel [25]). Therefore only those random polytopes which
contain the centre of B, in the interior have to be considered. In this case
the volume V, of H, is given by

{
VFZ;,T(f)p(f)

(Hadwiger [14, p. 78]), where the sum runs over all facets f of H,, T(f)
denotes the (d — 1)-dimensional volume of f, and p(f) denotes the distance
of the hyperplane containing f from the origin. Considerations similar to
those at the beginning of the proof of Theorem 1 yield

_ n a ~ s n—d
E(V )= e 1] ——
( n) (d) "xl €¢B4 Jx,,'e ¢Bg < cud)

do(x,) . do(x,)

Wy Wy

1
Xc_iTp (14 0(1)) as n-— oo,

where s, T, and p depend on the points x,, .., x;, and w denotes the
spherical surface measure on B,. Using the density transformation and the
formula for the second moment of the volume of a random simplex with
vertices on ¢B, cited in the proof of Theorem 1, it follows that

d—1 .1 n—d
_ _ n wd~l f —_S_
E‘V""<d> D1 ((d—l)wd) J, (1 wd>

x p(1—p2) ' =4=22 gp(1 4 o(1)) as n- 0.
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The substitution =1 —p leads to

= ,,_/ﬁ Wy \a’—l 1 s(1) ned
Ewﬁ}_&d)wd_l ((d“dl)lwa'j L (1 B md>

x (1 — £)(2f — 12) @ 4= gy + p(1))

/ C)afl \!d—;
\([d— o,/

I

1.
S E(S,)(1+o(1)) Ld>wd”

x ‘ (1 —S—(t—)> (2t — ) =402 gL+ o(1))  as a— 0.
Yo\ Wy

The asymptotic behaviour of the mean surface area E(S,) of H, determined
in Theorem 1 appears in the first term. The integral in the second term is
calculated in the same way as the corresponding integral in the proof o

Theorem 1: It is sufficient to consider spherical caps with small height 1< ¢
for suitable ¢. The surface area s(¢#) of a spherical cap with helght 18
approximated by the first term of the corresponding polynomiai in the
proof of Theorem 1. After using the substitution mentioned in that proof
the application of the asymptotic expansion of the gamma function finishes
the proof. J

rf
i

In the plane and in three dimensions it is possible tc compare the
approximation of B, by random polytopes H, with optimal approximation
of B, by inscribed polytopes having at most n vertices. The regular n-gon
with vertices on the boundary of the unit ball B, has maximal area among
all m-gons contained in B,. So the minimal distance between B, and
inscribed n-gons with respect to the symmetric difference is given by

n, 2r 2 (1\1 2 /1

{
T——sin—=x7 7|

\4
270 37 \n) _15"\;1)T”"

Theorem 2 shows that
_ 1\?
E(r—V,)=4x=> (—> |/1+o(1)\; as #—+ .
n) \ J

Therefore the expected distance achieved by stochastic approximation is
asymptotically 6 times the minimal distance.

If the three-dimensional unit ball B, is approximated by inscribed
polytopes with at most » vertices the minimal difference of the volumes is
given by

4
—’:n‘l(1+o(1)) as #—C
\/,/3 I

54G-63 2-7
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(Fejes Toth [9], Gruber [12]). On the other hand, using approximation
by random polytopes the mean difference is (Theorem 2)

= 1
E(ny—V,)=16x—-(1+0(1)) as n— cc.
n

So the expected distance obtained by stochastic approximation in three
dimensions is asymptotically 4 \/3/m (=~ 2.21) times the minimal distance.

Remark 2 [26, 19]. Let V, denote the volume of the convex hull of n
random points chosen independently and uniformly from the interior of the
d-dimensional unit ball B,. The expected difference between V, and the
volume 7, of B, is given by

- Wa_1 ( Oyt >(d+3)/(d+1)
2d+3)d— D)(d— DI \(d+ Dy,

E(de—’ Vn)

2 1 24d+1)
xf(d-i—l-f—d—ﬁ)(;) (1+o0(1)) as n—» o0,

where w, denotes the surface area of B,.

4. CHARACTERIZATION OF ELLIPSOIDS BY RANDOM SIMPLICES

THEOREM 3. (a) Let Z denote the volume of a random simplex with one
vertex at the centre of the d-dimensional unit ball B, and d vertices chosen
independently and uniformly from the boundary of B, The first and the
second moments of Z are given by

m Ogf gy ! N
E(Z)—d<—(d_1)wd) and  E(Z2)=

where w, denotes the surface area of B,.

(b) Let Z denote the volume of a random simplex with one vertex at
the centre of B, and d vertices chosen independently and uniformly from the
interior of B,. The first and the second moments of Z are given by

1

d
E(Z)ZTEd (——”d—l——> and E(ZZ)=W,

(d+1)r,
where T, denotes the volume of B,.

Proof. (a) The volume Z is represented by Z = pT/d, where T denotes
the (d— 1)-dimensional volume of the (d—1)-dimensional simplex with
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random vertices x,, .., x,€ ¢B, and p denotes the distance from the cenire

of B, to the hyperplane determined by x,, ... x,;. So
I ; deo(x))  dwixy)
E(z)z_‘ ‘ pT —— v ‘d
d vxie 8By v xge 8By @y (e
d—-1) Foor | , \
=\————d—)— (1 A TP do'(x)) - dow'(x) )
d(,gd ‘ch‘O v . /

x p(1—p*)~** dp dox{us),

where the coordinate transformation and the notations of the proof of
Theorem 1 are used. The d-fold integral in brackets is evaluated using the
second moment of the (d— 1j-dimensional volume of a random simplex
with all vertices on the boundary of a (d— 1)-dimensional ball (cf. proof of
Theorem 1). Finally the substitution g=1—p* is used to finish the proof.
The second moment E(Z?) is calculated in a similar way. Now the third
moment of the (d— 1)-dimensional volume of a random simplex with zli
vertices on the boundary of a (d— 1)-dimensional ball is used (see Miles
[187). The substitution p =cos x and integration by parts finish the proof

{b) The well-known coordinate transformation (sce Santaloé {22

dx,---dx;=(d— 1) Tdx' - dx,;dp deiu)

yields
N o dx, dx,
E(Z)=-| | pT Sl
d"’\,eB« *x4s Bs nd td
@=Dtr o, \
= i Tedx' - dx),} p dp doiu)

Here dx’ denotes the volume element of the intersection of B, with a hyper-
plane determined by the normal vector ue ¢B, and distance p from the
origin. The integral in brackets is evaluated using the second moment
PO Z(d—1)1(d+ 1)) (Miles [18]) of the (d—1)-dimensional
volume of a simplex with all d vertices chosen independently and uniformly
from the interior of a (d— 1)-dimensional ball of radius r. The third
moment of the volume of such a random simplex {Miles [187) is used for
E(Z?). The integration methods mentioned above {(a) finish the proof. §

Remark 3. A special version of a theorem proved by Groemer {10}
yields the following result: Let K denote & d-dimensional centrally sym-
metric convex body with centre 0 and with fixed volume 7,. Let Z denote
the volume of a random simplex with one vertex at { and d vertices chosen
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independently and uniformly from the interior of K. For any real number
m =1, the mth moment

EK(Z'")=J' ' gm @1 Xy

x1ek Yxge K T4 g

of Z is minimal among all d~dimensional centrally symmetric convex
bodies of volume 7, if and only if X is an ellipsoid.

COROLLARY. For every d-dimensional centrally symmetric convex body K
of fixed volume r; the inequalities

. a1 \¢ 1
EK(Z)>7I,1<(—d—ﬁ';7) and EK(Zz)ZdT(d-}——z)d
d .

hold with equality if and only if K is an ellipsoid.

Remark 4. McKinney [17] proved a more general version of the
following result: Let Z denote the volume of a simplex with one vertex at
the centre and d vertices on the boundary ¢K of a d-dimensional centrally
symmetric convex body K. Then for every K of volume n, the inequality

Max{Z|x,, .. x,€ 8K} > 1/d!

holds with equality if and only if K is an ellipsoid.
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